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Abstract.1 Strong external electromagnetic fields

make the QED vacuum unstable which decays by emit-

ting significantly boson or fermion particle-antiparticle

pairs. I report here the recent progress in studying

the particle-antiparticle pair production phenomenon:

1. New exact formulas for production rates of boson and

fermion pairs by a smooth potential step φ(x) ∝ tanh kz

in three dimensions. 2. Exact expressions for reflec-

tion and transmission coefficients, as well as for aver-

age numbers of produced pairs and for pair production

intensities obtained via the studying scattering versus

tunneling process by this potential. 3. On this basis,

re-examining and proof the standard spin-statistics re-

lation, a highly nontrivial task due to the vacuum in-

stability.

I report here the recent progress in studying
the vacuum instability with the consequent produc-
tion of particle-antiparticle pairs in the present of
an external and strong electric field of the spatial
pulse shape φ(x) ∝ tanhkz in three dimensions.
For a constant electric field, this process known as
Schwinger mechanism of electron-positron pair pro-
duction [1], whose basic physics is a tunneling of
a particle through an energy barrier of 2mc2 from
the negative energy levels of the Dirac sea to the
positive ones. The efficient method to solve this
problem exactly is based on the use of causal Green
functions to derive the pair production probabili-
ties by means of the asymptotic solutions of wave
equations in terms of scattering data [2].

In recent papers [3, 4], we study the scattering
process of a single particle satisfying the relativistic
Klein-Gordon and Dirac wave equations in an exter-
nal Sauter potential of the form eφ(z) = v tanh kz
corresponding to nonuniform electric field along z-
direction. The parameter k defines the inverse
width of the electric field, whereas the parameter
v governs its size |E| = vk/e, whose maximum
is given by the critical value |Ec| ≡ m2c3/eh̄ �
1.3×1018 V/m. In the transverse direction the par-
ticle propagates freely as a plane wave. The typical
scattering process by this potential involves an in-
coming particle coming in from the left which is
partly reflected back to the left and partly trans-
mitted forth to the right through the potential bar-
rier. For this process we find both the reflection and
transmission coefficients exactly.

The physically more interesting situation comes
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then into about when the hight of the potential bar-
rier v becomes larger than mc2. In this case, the
transmission coefficient of boson (fermion) particles
becomes negative implying the Klein paradox. As
its resolution, we must find the incoming antiparti-
cle in the right region of space instead of outgoing
particle. This happens because the usual separation
of positive and negative energy states occurring in
the absence of external fields is no longer ensured.
Instead, there can be the region where an overlap
of these states is allowed. In this level-crossing re-
gion, by means of tunneling between negative and
positive states, the pair production of charged par-
ticles takes place with the rate determined by the
transmission probability for a particle to cross the
forbidden region.

Taking into account the conservation of the total
probability, we express the production rate of boson
and fermion pairs via the logarithm of reflection co-
efficient as an ordinary energy-momentum integral
over the level-crossing (Klein) region as

w⊥ = (−1)2s+1 (2s + 1)
8π2h̄3

∫ (v2−m2)

0

dp2
⊥

∫ v−
√

p2
⊥+m2

−v+
√

p2
⊥+m2

dp0 ln R(p0, p2
⊥) , (1)

where s being the spin of a particle and the integra-
tion is done over the Klein region in the (p2

⊥, p0)-
plane as shown in Fig. 1.

Interchanging the order of integration, we per-
form the momentum integral in Eq. (1) to obtain
for pair production rates the exact representation

w⊥=
(2s + 1)

3π
k3

∫ ξ̄

−ξ̄

dξ g(ξ)
1

e−2π(ξ−κ) + (−1)2s
, (2)

where ξ̄ ≡ √
v2 − m2/h̄k, the parameter κ being

κ =
√

v2/k2h̄2 − 1/4 for bosons and κ = v/kh̄ for
fermions respectively, and the function g(ξ) is the
density of boson (fermion) states

g(ξ) =
ξ
(
ξ̄2 − ξ2

)3/2

(
ξ̄2 − ξ2 + m2/h̄2k2

)1/2
= −g(−ξ) . (3)

This function is the unique for bosons and fermions,
and counts the number of modes per unit ξ-interval.
Contrary, the second function under the integral in

126



Figure 1: In the (p2
⊥, p0)-plane, the level-crossing

covers the positive region restricted by two inter-
secting parabolas p0 = v − √

p2
⊥ + m2 and p0 =

−v +
√

p2
⊥ + m2 with horizontal axes of symmetry

above and below the p2
⊥-axis for v > m

Eq. (2) is different by sign for bosons and fermions.
It represents the local probability for production of
a single particle-antiparticle pair in a certain energy
mode on this interval

ts(ξ) =
1

e−2π(ξ−κ) + (−1)2s
=

= 1 − 1
e2π(ξ−κ) + (−1)2s

= (−1)2s (1 − rs(ξ)) , (4)

where rs(ξ) is the local probability that no boson
(fermion) pairs are created in this energy mode.
This equation implies the conservation of the to-
tal probability for transition of an arbitrary initial
state into all possible final states during the scat-
tering process.

Then we find the average number of produced
boson (fermion) pairs created in a certain energy
mode on ξ-interval −ξ̄ ≤ ξ ≤ ξ̄ as [5, 6]:

n̄(ξ)=
ts(ξ)

1 + (−1)2s+1 ts(ξ)
=

ts(ξ)
rs(ξ)

= exp (2π(ξ − κ)) .

(5)
It is the Bose-Einstein distribution for spin s = 0
particles, and the Fermi-Dirac distribution for spin
s = 1/2 particles. This preserves therefore the
normal relation between spin and statistics even
though the vacuum instability invalidates the stan-
dard proof of the spin-statistics theorem of quantum
field theory.

Finally, in the papers [3, 4], we calculate the in-
tegral (2) as a series expansion in powers of small
dimensionless parameter 0 < k̃ < 1. Introducing
the probability rate w ≡ w⊥/L, we find

w=−(2s+1)
(e|E|)2
8π3h̄2

{
Li2(−eρ̃) + k̃2

[
5π

2ε
Li1(−eρ̃)−

−3
4

Li2(−eρ̃) − 3ε

2π
Li3(−eρ̃)

]
+ · · ·

}
, (6)

where Liν(z), ν = 1, 2, 3, . . ., are the polyloga-
rithm functions, ρ̃ � −π/ε + π(εk̃2)/4 + · · ·, and
ε = |E|/|Ec|. For k̃ small, the leading term in
Eq. (6) yields already an excellent approximation.
In a constant-field limit k̃ → 0, we obtain from
Eq. (6):

w → −(2s + 1)
(e|E|)2
8π3h̄2 Li2(−e−π/ε) . (7)

in the complete agreement with the result of
Schwinger [1].

In the papers [5, 6], we calculate also the pair
production intensities for the Sauter potential. Ap-
plying the sane small-k̃ expansion, we find

n = (2s+1)
(e|E|)2
8π3h̄2 e−π/ε

[
1 + k̃2

(
πε

4
− 3ε

2π
− π2

8
−

− 3
8π2

+
33π

8ε
+

π2

8ε2

)
+ · · ·

]
. (8)

In a constant-field limit k → 0, this yields the in-
tensities

nf = 2nb =
(e|E|)2
4π3h̄2 e−π/ε (9)

again in a full agreement with the result of
Schwinger [1]. The obtained formulas preserve
the normal form of the spin-statistics relation, and
reproduce also the known Schwinger results in a
constant-field limit.
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